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Interpretation of 13C chemical shifts is essential for structure elu-
cidation of organic molecules by NMR. In this article, we present an
improved neural network approach and compare its performance
to that of commonly used approaches. Specifically, our recently pro-
posed neural network (J. Chem. Inf. Comput. Sci. 2000, 40, 1169–
1176) is improved by introducing an extended hybrid numerical de-
scription of the carbon atom environment, resulting in a standard
deviation (std. dev.) of 2.4 ppm for an independent test data set of
∼42,500 carbons. Thus, this neural network allows fast and accu-
rate 13C NMR chemical shift prediction without the necessity of ac-
cess to molecule or fragment databases. For an unbiased test dataset
containing 100 organic structures the accuracy of the improved neu-
ral network was compared to that of a prediction method based on
the HOSE code (hierarchically ordered spherical description of en-
vironment) using SPECINFO. The results show the neural network
predictions to be of quality (std. dev. = 2.7 ppm) comparable to
that of the HOSE code prediction (std. dev. = 2.6 ppm). Further we
compare the neural network predictions to those of a wide variety
of other 13C chemical shift prediction tools including incremental
methods (CHEMDRAW, SPECTOOL), quantum chemical calculation
(GAUSSIAN, COSMOS), and HOSE code fragment-based prediction
(SPECINFO, ACD/CNMR, PREDICTIT NMR) for the 47 13C-NMR
shifts of Taxol, a natural product including many structural fea-
tures of organic substances. The smallest standard deviations were
achieved here with the neural network (1.3 ppm) and SPECINFO

(1.0 ppm). C© 2002 Elsevier Science (USA)
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INTRODUCTION

Structure elucidation based on NMR data—manual or
automated—can usually be separated into two steps: 1. gen-
eration of structural proposals (by hand or with a structure gen-
erator), 2. validation of the proposed structures. Based on the
13C NMR spectrum, the latter step requires accurate methods
for the prediction of 13C NMR chemical shifts. Considering the
huge sets of structures which can be obtained using structure
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generators (1–3), the prediction has to be fast as well, to provide
the result in a meaningful time.

The two basic approaches to 13C NMR chemical shift pre-
diction are ab initio and empirical calculations. On the one
hand, ab initio methods can (in principle) calculate the magnetic
properties of any molecular structure, such as shielding tensors,
shielding anisotropy, and isotropic chemical shifts with respect
to an applied magnetic field and the nuclear magnetic moment
(e.g., Schindler and Kutzelnigg (4), Gauss (5) or Cheeseman
et al. (6 )). These results can be produced with high accuracy
for entire molecular systems starting from an optimized three-
dimensional structure of the compound. An important advantage
of these methods is that the resulting chemical shift values are
not biased by previous experimental results.

However, the necessity to predetermine the correct configu-
ration and conformation in addition to the constitution restricts
the applicability of ab initio methods. The real three-dimensional
structure is often unknown and multiple conformations have to
be taken into account for small and flexible molecules, in partic-
ular. An extensive optimization of the spatial structure and/or the
consideration of multiple conformations make such calculations
very time consuming and expensive.

Consequently, the chief advantage of ab initio methods is
the handling of newly synthesized compounds with exotic
structural fragments. Such structures are underrepresented in
present databases and their spectrum–structure relationships are
therefore often described insufficiently. For example, this was
recently shown by Cheeseman and Frisch for cyclopropane, bi-
cyclobutane, [1.1.1]propellane, and oxaspiropentene (7 ).

By contrast, empirical approaches rely on knowledge of
chemical shifts from large sets of known molecular structures.
The first empirical relationships for 13C chemical shift predic-
tion were given by Grant and Paul (8) for paraffins; a few years
later, Lindeman and Adams published an extended and conve-
nient correlation chart determined from 59 n- and iso-alkanes
(9). Now, the way was open for simple manageable additive
methods in chemical shift prediction. The basic idea is the intro-
duction of an individual term (increment) σ i for each substituent
i of a single carbon atom or of a structure fragment (such as,
e.g., a benzene ring or a double bond). The values of σ i were
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determined from the observed shift differences between unsub-
stituted (σ0) and singly substituted fragments (σi0):

σi = σi0 − σ0. [1]

Now, the chemical shift value σcalc is computed by adding all
appropriate increments beginning with the value of the nonsub-
stituted carbon or fragment σ0,

σcalc = σ0 +
∑

i

σi + K , [2]

where K represents an additional steric correction term.
The advantage of the additivity method is its simplicity, which

allows to adopt it easily to other classes of substances. For larger
molecules a larger number of increments must be added, so that
manual summation becomes tedious. Clerc and Sommerauer
presented the first computer program which predicted the 13C
NMR shift values for a given chemical structure by means of
these additivity rules (10). Nowadays computer programs are
available to perform this method extremely fast for all ordi-
nary organic substances of relevance. For example, the method
of Fürst and Pretsch (11) was implemented in the program CS
CHEMDRAW Pro (12). Pretsch and co-workers recently presented
a new version of their well-known prediction program SPECTOOL

which allows the assignment of both 1H and 13C shift values to a
given structure (13). However, large deviations between exper-
imental and predicted chemical shift values are often obtained
for highly substituted and sterically hindered structures. A lim-
itation of this simple approach is caused by the disregard of
the intramolecular interactions between individual substituents.
Therefore so-called cross terms σi j were introduced into Eq. [2]
to compensate for these imperfections. However, to consider all
possible interactions between three and more substituents, the
introduction of individual cross terms (σi jk , σi jkl , . . . ) for every
single case would be needed, which quickly becomes difficult
to parameterize reliably.

Since the beginning of NMR spectroscopy, experimental data
have been collected in special libraries, together with the cor-
responding structures. Simultaneously with the enhancement of
computer technology these data were stored in spectra databases
(14). In addition to the relatively simple storage of 13C NMR
chemical shift values, the one-dimensional coding of the chemi-
cal environment of each carbon atom also became necessary for
efficient electronic data processing. The hierarchically ordered
spherical description of environment (HOSE) code, developed
by Bremser (15), is suitable for this problem. Starting from the
atom of interest, all atoms bonded directly to this atom (1st
sphere), over two bonds (2nd sphere), and so on are coded using
characters which define atom types, bond types, ring closures,
and spheres. The number of described spheres depends on the
length of the code.

The prediction of 13C NMR chemical shifts was possible

for any molecular structure by computing the HOSE code for
each carbon and subsequent similarity search in the database.
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Provided that the database contains similar HOSE codes, this
method allows an exact prediction of carbon chemical shifts.
However, the accuracy of the prediction strongly depends on
the similarity between the new and known HOSE codes and
on the quality of the database (e.g., number of wrongly assigned
spectra or systematic errors from the experiment). Here a further
advantage of databases becomes obvious—the reference to all
original data. This enables a supplementary cross-check of the
assignment. Disadvantages of this method are the relatively long
CPU time (∼1–60 s depending on size and accessibility of the
database) compared with additivity methods (few ms), the en-
hanced uncertainty for structures outside the covered structural
space in comparison with quantum chemical approaches, and
the necessity of access to large databases. Existing implementa-
tions of such databases for 13C NMR chemical shift prediction
are SPECINFO (14 ), ACD/CNMR (16 ), and PREDICTIT NMR (12).

With the introduction of artificial neural networks into che-
mistry in recent years (for an introduction to the field read, e.g.,
(17)), their potential for 13C NMR chemical shift prediction
was evaluated. Similarly to the historical development of in-
cremental methods, they were applied first to several classes of
substances (18–24). Applications covering the overall space of
described organic molecular structures were published in last
years by Robien and LeBret (25, 26 ). Recently, we have shown
the introduction of the numerical HOSE code description into a
neural network for the same purpose (27).

In this paper we describe an essential enhancement of this
neural network approach and compare the model with a variety
of traditional methods such as additivity rules, fragment-based
database searches, and quantum chemical calculations to review
the existing implementations as well as their advantages and
disadvantages.

RESULTS AND DISCUSSION

Computation of 13C NMR chemical shifts with an artificial
neural network requires the numerical description of the chemi-
cal environment of the carbon atom of interest. This description
must meet certain conditions to be suitable as input for a neu-
ral network. Thus, the input vector should be constant in length
and independent of the number of descriptors necessary for cod-
ing the structural environments. Further, a particular digit of the
vector should always describe the same structural feature, in-
dependent of the actually coded carbon atom. Only the chosen
value applied on an input is influenced by the specific description
of the structural environment of the actual carbon atom. These
conditions meet the requirements for reasonable training of the
neural network, since the influence of a respective structural
feature can be understood by a certain input unit.

In consequence, every constitutionally different atom posi-
tion around a carbon needs individual input units. The maximum
number of potential atom positions of one substituent depends

on the number of considered spheres (compare Fig. 1). Only
one position must be considered in the first sphere, up to three
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FIG. 1. Comparison of the description of atom environment used in the first v
d
t

spheres considered was increased from 5+ sum sphere to 7+ sum sphere. The in
the new version. All atoms in the first three spheres around an observed carbon a

possible positions in the second sphere, up to nine in the third,
and up to 2187 in the eighth sphere. Thus, to code the environ-
ment of a quaternary carbon atom over eight spheres,

4 × (1 + 3 + 9 + 27 + · · · + 2187) = 13, 120 [3]

descriptors would be necessary. This number is unacceptably
large for the input layer of a neural network, given the resulting
extremely large number of weights and the unreasonably long
training time. This large number of input neurons may be re-
duced using so-called sum parameters that describe not only a
single atom, but the sum obtained for a group of atoms, e.g.,
all atoms in a specific sphere. Especially, the large number of
possible atom positions in the outer spheres, which are obvi-
ously rarely sampled, is drastically reduced by this procedure.
All atoms that occur in organic substances (and are therefore
frequently sampled in 13C NMR databases) are subdivided into
different atom classes by analyzing their atomic number, hy-
bridization state, and number of bound hydrogen atoms by a
straightforward approach (compare, e.g., Table 1 or (27)). The
environment of a carbon atom can now be assessed by evalu-
ating the number of occurrences of each of these atom classes
in every sphere. Therefore, the number of necessary input neu-
rons is reduced to the number of atom classes multiplied by the
number of outer spheres. Considering, e.g., 30 atom classes and
six spheres without the distinction of different substituents, only
6 × 30 = 180 would be necessary.

Such an approach was introduced (27) by defining 28 atom
classes and two additional sum parameters counting the num-
ber of hydrogen atoms and the number of ring closures in each

sphere. These 30 numbers were collected for the first five spheres
plus one additional sum sphere that contained all atoms of the
sixth and higher spheres, yielding 180 input parameters. To
ersion of C SHIFT (a) with the newly introduced description (b). The number of
ividual substituents of a carbon atom form individual parts of the description in

om are described by eight atom parameters.

TABLE 1
Introduced Classes of Atoms and the Number of Atoms

in Each Class in the Used Set of Data

Frequency of atoms
ID Atom class in this class

1 〉C〈 54 074
2 〉CH– 134 203
3 –CH2– 280 331
4 –CH3 202 109
5 ==C〈 158 815
6 ==CH–/==CH2 77 808
7 ≡C–/≡CH/==C== 10 119
8 )〉C– (aromatic) 195 095
9 )〉CH (aromatic) 302 212

10 〉N– 32 238
11 –NH– 28 411
12 –NH2 7 917
13 ==N–/==NH 26 842
14 ≡N 5 905
15 –NO2 6 140
16 )〉N (aromatic) 12 966
17 ==N≡ 423
18 –O– 100 359
19 –OH 59 877
20 ==O 112 320
21 〉P–/–PH–/–PH2 631
22 〉PO– 2 220
23 –S–/–SH 11 358
24 ==S 3 264
25 〉S==O 740
26 〉SO2 5 307
27 –F 15 862
28 –Cl 24 454
29 –Br 6 109
30 –I 1 132

31 Sum of all hydrogen atoms bound in this sphere
32 Sum of all ring closures in this sphere
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consider the additional influence of a conjugated π -electron
system, a second vector of 180 numbers was determined, in
which only atoms were counted that belong to the same π -
electron system as the carbon atom of interest. Thus, the three-
layer neural network contained 360 input units. For each of the
nine individual carbon atom classes used here, an individual
neural network was trained. The average deviation for predict-
ing the chemical shift values of an independent validation set
of about 1000 molecules with more than 15,000 carbons was
1.8 ppm (27). This result comes close to the deviations obtained
by the more time-expensive HOSE code predictions. However,
larger deviations were obtained for conjugated systems, tertiary
and quaternary carbon atoms, small ring systems, and double-
bonded carbon atoms. This weakness of the neural network
compared to databases was discovered by the chemical shift
prediction of marine natural compounds which were computed
previously by the structure generator COCON (28). To address
this shortcoming the description of the atom environment was
modified as shown in Fig. 1.

The number of spheres considered in the code was increased
from 5 plus the sum-sphere to 7 plus the sum-sphere. This modi-
fication ensured that the influence of a conjugated π -electron

system on the chemical shift was felt even more. To improve sulting code of a carbon substituent has been lengthened

the prediction of quaternary and tertiary carbon shifts the indi-
vidual substituents of a carbon atom were handled separately;

FIG. 2. The description of the atom environment is shown by the example of one single substituent on an “atom” level and on a “sphere” level. Further, the
architecture of the neural networks is given. An “atom resolved description” is used in the first three spheres, which consists of 8 parameters per atom. For each
of the next four spheres and the additional sum-sphere a “sum parameter description” is applied. The occurrences of the 32 defined atom types are counted two
times, the first time considering all atoms, the second time considering only atoms that belong to the same π -electron system as the atom of interest. The atoms in
the first three spheres (up to 13) are treated by eight input neurons each, which leads to 104 input units. The 64 input values necessary to code one sphere lead to

to 13 × 8(inner spheres) + 64 × 5(outer spheres) = 424 descrip-
tors. This is schematically shown in Figs. 1 and 2.
320 parameters for spheres 4, 5, 6, 7, and the sum-sphere. This input vector is app
input units (Table 2). The data are processed by a hidden layer and one output ne
allyl carbon atoms (class 7) and 32 in all other cases.
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an input vector is computed and input neurons are provided for
each substituent of the carbon. Thus, possible interactions be-
tween these substituents are described more precisely than in
the original code. Consequently, the numerical description of
a quaternary carbon atom is four times longer than a methyl
group description. Individual neural networks are trained for
primary, secondary, tertiary, and quaternary carbon atoms with
well-defined but different sizes of the input layer. A further
modification is suggested by the problems that occur in pre-
dicting the chemical shift for small ring systems, conjugated
π -electron systems, and highly substituted carbon atoms. The
important interactions and influences of the inner sphere atoms
are not properly picked up by the sum parameters. Since the num-
ber of necessary descriptors for an individual coding of atoms
stays rather small for inner spheres, these atoms were no longer
described by sum parameters but rather coded individually by
introducing eight parameters: number of valence electrons, pe-
riod, electronegativity, van der Waals radius, hybridization, bond
type to previous atom, number of bonded hydrogen atoms,
and ring closures. Further, the number of atom classes was
enlarged to 30 to include azides –N==N≡N and sulfoxides
〉S==O (Table 1, ID 17 and ID 25). Consequently, the re-
lied for every substituent of a carbon atom, which leads to a varying number of
uron computes the chemical shift value. The number of hidden neurons is 8 for
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TABLE 2
Results for Training and Testing the Artificial Neural Networks

Training and monitoring data Test data

Net structure std. dev. aver. dev. std. dev. aver. dev.
ID Atom type inp-hid-outa Count [ppm] [ppm] Count [ppm] [ppm]

1 〉C〈 1 696-32-1 52 379 1.9 1.2 1 695 2.9 1.7
2 〉CH– 1 272-32-1 130 289 2.6 1.8 3 914 3.1 2.1
3 –CH2– 848-32-1 272 189 2.1 1.4 8 142 2.4 1.5
4 –CH3 424-32-1 195 842 1.9 1.1 6 267 1.9 1.2
5 ==C〈 1 272-32-1 153 952 2.7 1.8 4 863 3.4 2.2
6 ==CH–/==CH2 848-32-1 75 415 2.3 1.6 2 393 3.1 2.1
7 ≡C–/≡CH/==C== 848-08-1 9 837 2.2 1.4 282 3.0 1.9
8 )〉C– (aromatic) 1 272-32-1 189 197 2.2 1.5 5 898 2.5 1.7
9 )〉CH (aromatic) 848-32-1 293 169 1.7 1.1 9 043 1.7 1.1

Weighted average 1 372 269 2.1 1.4 42 497 2.4 1.6
be

ertheless, tremendous improvements are obtained for some of
a Structure of the used three-layer neural network : num
output nuerons.

Overall, a set of 1.3 million descriptions was constructed out
of the SPECINFO database (14). To consider the carbon atom
classes listed in Table 2, nine different neural networks were
trained using the program SMART (29). For this, the available
data material was subdivided into three groups. The predominant
majority (∼95% of all molecules) was employed for the train-
ing of the networks whereas the remaining molecules served
as a monitoring set (∼2% of all molecules) and as an inde-
pendent test set (∼3% of all molecules). The monitoring set
ecise moment of interrupting the training pro- the discussed structural fragments, as explained in the following

cess to prevent so-called overtraining. The test set serves as paragraphs.
ation diagrams illustrating the results obtained by the neural ne
In both diagrams ∼2000 randomly selected carbon atoms are v
r of input units − number of hidden neurons − number of

an independent validation of the final neural networks. All
results are summarized in Table 2. In Fig. 3 the quality of
the prediction is illustrated by two correlation diagrams for
the training and the test set of molecules, respectively. The
trained neural networks are implemented in a new version of
the C SHIFT software (27, 29). Only a slightly better average
deviation (aver. dev.) of 1.6 ppm was obtained in comparison
to the former neural network (aver. dev. = 1.8 ppm) (27). Nev-
twork chemical shift prediction for the training set of data (a) as well as for the
isualized.
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FIG. 4. Constitution of the anti-tumor agent Taxol used to compare the
neural network prediction of chemical shifts with other methods. The unusual
order of numbering the atoms was introduced by the SPECINFO database. Stereo-
chemistry is only considered by the GAUSSIAN and Cosmos programs. All other
prediction methods rely on this constitution formula only.

A dramatic decrease of the already small average deviation
was not expected based on these modifications. A decrease
of the maximum deviations for carbon atoms involved in the
mentioned structural features is useful, especially for the pre-
diction of structures outside the structural space covered by
databases.

A detailed comparison of different chemical shift determina-
tion methods is performed by analyzing experimental and pre-
dicted chemical shift values of the antitumor agent Taxol (30)
(Fig. 4). Multifaceted structural features common in organic
chemistry are to be found in this natural compound. The chemi-
cal shifts of the 47 carbons were available both as experimental
data (31) and as results of ab initio calculations (6, 7). The ex-
perimentally determined 13C NMR shift values were compared
with the calculated ones from both versions of the C SHIFT pro-
gram, with the HOSE code prediction by the SPECINFO database
(14), with the Bio-Rad PREDICTIT NMR tool (32), and with the
ACD software package CNMR (16). A comparison was also
made with results from the incremental methods CS CHEMDRAW

PRO (12), and SPECTOOL (13), the ab initio calculations from
GAUSSIAN 98 (33) (the chemical shifts were computed from NMR
calculations performed at the HF/6-31G(d) level using STO-3G
optimized geometries), and a quantum chemical calculation with
the COSMOS 4.5 program (34). (In this case, three C-atoms were
excluded since no suitable groups were available for the param-
eterization. Chemical shifts are predicted on the basis of their
proportional behavior with respects to bond polarization energy
utilizing bond polarization theory (BPT) (35–37)).

Table 3 presents the results for all these different methods for
the 47 individual carbon atoms. The deviations of the experi-
mental chemical shift values are represented graphically by the

area of the circle next to the numerical value. This allows fast
comparison of the different procedures (columns) and of the
TION OF CHEMICAL SHIFT 247

individual structural features (rows). In addition, the standard
deviation (std. dev.),

std.dev. =
√∑n

i=1

(
σ estim

i − σ
exp
i

)2

n − 1
, [4]

is given for the different methods to estimate the error for an
unknown carbon.

On closer examination of values in Table 3, it is striking that
the accuracy of the prediction varies between different methods
as well as between different atoms. A continuous enlarged inac-
curacy is shown for the aromatic carbon atoms C-3, C-6, C-11,
and C-14 with all methods. This suggests that the experimen-
tal values themselves have been wrongly assigned for the two
ipso-carbons C-3 and C-11 and the two para-carbons C-6 and
C-14, respectively. After the experimental values are exchanged,
the average deviations of the computed values from these four
atoms decrease from 5.2, 3.1, 4.5, and 4.3 to 0.8, 0.5, 0.1, and
0.7 via all nine prediction methods. In what follows, we assume
that these experimental values should be exchanged. In Table 3
the updated overall std. dev., aver. dev. and maximal deviation
values (if necessary) are given in brackets.

The HOSE code prediction method of the SPECINFO database
achieves a std. dev. of 1.0 ppm using five spheres for the descrip-
tion of the carbon atom environment. To allow an unbiased com-
parison Taxol was removed from the database prior to predicting
the chemical shift values. The neural network that uses the newly
introduced description method comes very close to these excel-
lent results by achieving a std. dev. of 1.3 ppm. Also in this case
Taxol was not part of the dataset that was used for training the
network connections. The maximal obtained deviation for a sin-
gle carbon atom is very small with 3.4 ppm for the neural network
and 3.0 ppm for the HOSE code prediction. The improvement of
the new neural network becomes obvious by comparing it with
the former approach; the standard deviation is less than half
of that with the previous neural network, and the maximal devi-
ation also drops by more than 50%. This result is due to the fact
that some large deviations for single carbon atoms (e.g., C-10,
C-23, C-36, C-38, C-57) are dramatically reduced. These carbon
atoms generally belong to one of the earlier mentioned structural
features that are insufficiently described in the old method: C-38
and C-57 belong to a four-membered ring, C-23 participates in
a double bond, and C-36 and C-10 are tertiary carbon atoms.
PREDICTIT NMR achieves a std. dev. of 3.7 ppm, again after re-
moving Taxol itself and similar structures from the fragment
database. The largest deviations are obtained for the sterically
hindered ring system C-32, C-33, C-34, C-35, C-36, C-37, C-38,
C-39, and C-57. The second problematic region is also situated
in the ring system at C-22, C-23, C-27, and C-31. Here the
lack of fragments that describe such structural features becomes
obtainable. The remaining chemical shifts are predicted remark-

ably well. The CNMR package achieves a std. dev. of 2.9 ppm.
Even larger deviations are observed here for the fragments C-22,
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TABLE 3
Comparison of Experimental and Predicted 13C Chemical Shifts for Taxol
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13
FIG. 5. Comparison of the experimentally obtained and several predicted C NMR spectra. The number of incorrect assignments that would be obtained by

m

FIG. 6. Distribution of the 1547 C NMR chemical shifts in the 100 oragnic
ordering the carbon atoms just by the corresponding predicted chemical shift va
number of inversions—all cases in which the relative order of two predicted che

C-23, C-27, C-31. However, in this case Taxol itself and also
14 similar structures are part of the ACD database and therefore
also part of the HOSE code library (which of course makes it
easy to predict chemical shifts very exactly). The large devia-
tions obtained for the mentioned region are probably caused by
the variance of the 15 structures in the substituent attached to
C-31 and its enormous influence on the attached double bond.

Incremental methods (std. dev. 5.6 ppm and 5.3 ppm), as
well as quantum chemical calculations (std. dev. 4.3 ppm and
5.1 ppm), gave worse results. Incremental methods fail for highly
substituted carbon atoms with interacting substituents such as
C-33 and C-34. While the quantum chemical calculation sup-
plied good results here, unexpectedly large deviations appear in
the case of C-1 and C-61. Further deviations were found for a
multiplicity of carbons independent of their hybridization state
and degree of substitution, e.g., C-4, C-8, C-19, C-23, C-36,
C-42, C-47, and C-58 in the case of GAUSSIAN and C-3, C-19,
C-27, C-38, C-47, C-49, C-51, and C-57 for COSMOS. This un-
certainty is often in contradiction to the weaknesses of the other
methods. In such a way, the quantum chemistry calculations
supplement database methods.

The GAUSSIAN and COSMOS programs start from a three-
dimensional structural model. All other implementations use ex-
clusively the constitution of the molecule for the chemical shift
prediction and are unable to distinguish between the diastero-
topic atoms C-29 and C-30. Thus, the prediction of 13C chemical
shift cannot be perfect for every atom. (ACD reports two differ-
ent values for the methyl groups only because the experimental
spectrum is in the database.) Neglecting the three-dimensional
structure can lead to single deviations of up to 30 ppm in some
rare cases. However, usually the deviation that is introduced
by this simplification lies well below 5 ppm. The error result-

ing from experimental uncertainty is suggested to lie between
0.5 and 1.0 ppm, comparing 13C NMR spectra obtained in dif-
lue is given by the first integer in the brackets. The second integer holds the total
ical shifts is the opposite of that observed experimentally.

ferent experiments but using the same solvent and working at
the same temperature.

Figure 5 provides a visual comparison of the obtained 13C
NMR spectra. Since often not the absolute deviation in pre-
dicting 13C NMR chemical shifts is important, but the possible
incorrect assignments caused by these deviations, we count the
number of incorrect assignments if the carbon atoms are ranked
by their predicted chemical shift values (Fig. 5). This number
is 7 for the SPECINFO, and the new implementation of the neural
networks is in the range of 11 to 18 for the CNMR, PredictIt
NMR, the old implementation of the neural network, both in-
cremental methods, and both quantum chemical methods. The
total number of inversions (inversion means that the relative
ranks of two predicted shifts is the opposite of that observed
experimentally) is a more sensitive measure of the probability
of incorrect assignments, since every single inversion would be
an incorrect assignment in a molecule with just these two carbon
atoms. The maximal number of possible inversions is therefore
1
2 × 46 × 47 = 1081 for Taxol. The value is especially sensitive
for large deviations in some of the predicted shifts since they
lead not only to one but several inversions.

For this benchmark, the new implementation of the neural net-
works is better than SPECINFO, having only 10 inversions (0.9%),

13
molecules used to compare the advanced neural network implementation with
the former implementation and with SPECINFO HOSE code prediction.
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TABLE 4
Results of Chemical Shift Prediction of 1547 Carbons in 100 Newly Formed Structures, Which Were

Not Included in the Database

C SHIFT (new) C SHIFT (old) SPECINFO

IDa Count std. dev. aver. dev. max. dev. std. dev. aver. dev. max. dev. std. dev. aver. dev. max. dev.

1 68 3.8 2.5 16.0 3.7 2.7 16.8 1.9 0.9 10.7
2 149 3.1 2.3 11.8 4.4 3.4 13.2 2.9 1.7 12.2
3 288 2.4 1.8 8.9 2.9 2.1 10.8 2.5 1.4 15.4
4 242 2.0 1.3 7.6 2.3 1.5 10.0 1.5 0.9 7.3
5 190 3.3 2.3 12.3 5.3 3.6 22.8 2.7 1.5 21.9
6 118 2.9 2.2 10.1 5.6 4.1 25.0 2.3 1.4 15.7
7 12 3.2 2.5 7.2 4.7 4.0 7.8 3.6 2.7 7.3
8 233 2.8 2.1 10.7 3.9 2.8 15.6 3.6 2.1 18.2
9 247 1.7 1.2 5.3 2.0 1.4 8.1 2.2 1.2 11.8
All: 1 547 2.7 1.9 16.0 3.7 2.5 25.0 2.6 1.4 21.9
a Nine different carbon atom classes (see Table 2).

compared with 19 inversions (1.7%) for SPECINFO. This value is
significantly higher for CHEMDRAW, SPECTOOL, PREDICTIT NMR,
and CNMR with 34, 35, 39, or 36 (∼3%) inversions, respec-
tively, as well as for the first implementation of the neural net-
works (46 inversions, 4.2%). GAUSSIAN and COSMOS achieve the
highest values with 73 (6.8%) and 106 (9.8%) because of the
large systematic errors for some of the predicted chemical shift
values.

The accuracy of the two quantum mechanical methods is
worst for our example molecule and lies below expectations.
For small molecules where a precise geometry is available such
methods are known to predict the 13C chemical shift values with
deviations as low as 1–2 ppm (6). The significantly higher devi-
ations obtained here are mainly caused by the inaccuracy of the
three-dimensional model (which is hard to compute precisely
for such “large” molecules) rather than by the accuracy of the
chemical shift prediction itself.

A statistically more valid test of the method is performed us-
ing a small database of 100 molecules that are not part of the
SPECINFO database and therefore also not used at all for training
the neural network. These substances reflect a broad range of
organic chemistry, as shown by plotting the distribution of the
chemical shift values in Fig. 6 (the distribution is very similar to
the distribution of all chemical shifts in the SPECINFO database).
The chemical shift values of ∼1500 carbon atoms are computed
by C SHIFT and the SPECINFO database HOSE code prediction
only. The deviations to the experimental values are compared
for all nine introduced carbon atom classes in Table 4. The im-
provement for classes 2, 5, 6, 7, and 8 by switching to the newly
introduced atom environment description is clearly to be seen.
The method approaches the result yielded using a HOSE code
prediction with the complete SPECINFO database in the back-
ground, although slight differences have to be mentioned: The
networks are slightly better for the aromatic carbon atom classes
onjugated systems are certainly better described
ed description compared to the HOSE code pre-
diction. The neural networks produce slightly worse results for
the classes 1, 5, and 6. Obviously, the large number of input neu-
rons necessary for coding the substituents in comparison to the
relatively low number of the corresponding carbon atoms in the
training set of data lead to a slightly worse model in these cases.
This is suggested by the large differences between the deviations
of the training and the test data sets for these classes (cf. Table 2).
However, the std. dev. of the test data set could not be decreased
by reducing the number of neurons in the hidden layer.

Overall the artificial neural networks approach the accuracy of
HOSE code prediction methods in quality. However, keeping in
mind that the trained neural networks are database-independent
and about 1000 times faster than the HOSE code predictions,
the method is well suited for routine work on a PC and for the
fast screening of large numbers of molecules.

CONCLUSION

In this paper a new numerical description for the constitutional
environment of a carbon atom is introduced as input for artifi-
cial neural networks to predict the 13C chemical shift. Artificial
neural networks are capable of combining the twin advantages
of increments and HOSE code chemical shift prediction: rapid-
ity and accuracy. After expensive training to be carried out only
once, they run a prediction about 1000 times faster and indepen-
dent of direct access to a database. Since interactions between
substituents are considered in the training data, they are more
precise than incremental methods. They are also expected to
be more accurate in comparison to the HOSE code prediction
and incremental methods in estimating chemical shifts of newly
synthesized molecules which are badly represented in databases.

Based on nine different neural networks, the C SHIFT program
is able to predict the 13C NMR chemical shift of all organic
compounds that contain exclusively H, C, N, O, P, S, and the

halogens. The method achieves a standard deviation (std. dev.) of
2.4 ppm and 2.7 ppm for two sets of independent test molecules,
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respectively. These results are comparable with the results ob-
tained using a five-sphere HOSE code prediction relying on the
SPECINFO database (std. dev. = 2.6 ppm).

By the example of the antitumor agent Taxol as an organic
compound including many typical structural features, the capa-
bility of the neural networks is shown in comparison to a broad
variety of prediction methods. The best results were obtained
using SPECINFO HOSE code prediction and the here introduced
artificial neural networks (std. dev. = 1.3 ppm). The HOSE code
predictions of PREDICTIT NMR and ACD CNMR achieve std.
dev. of 3.7 ppm and 2.9 ppm, respectively. However, the avail-
ability of Taxol fragments in the ACD database biases this re-
sult. Incremental methods as CHEMDRAW and SPECTOOL supply
worse results for this complicate structure (std. dev. 5.6 ppm and
5.3 ppm). The much more extensive quantum chemistry routines
of COSMOS and GAUSSIAN lead also to rather large deviations (std.
dev. 4.6 and 5.1 ppm), mainly caused by incorrect representation
of three-dimensional structure and dynamics rather then by the
prediction method itself.

Methods that rely on fragment databases (HOSE codes) are
fully capable of incorporating new structures fast into their pre-
diction by adding the fragments or HOSE to their database. Also
neural networks could be retrained dynamically to be adjusted
if new substances of even novel substance classes are found.
However, ab initio methods do ideally not need any adjustment
at all in predicting new classes of substances.

EXPERIMENTAL

All neural networks were created, trained, and analyzed using
the software SMART (29). The three-layer networks were trained
using back propagation of errors (e.g., (17) or (38)). The learn-
ing rate η was decreased from 0.01 to 0.0001 during the training
procedure and the momentum α was set to 0.5. The training
took between ∼300 and ∼7000 iterations, depending on the
size of the network and the training set of data. The optimization
was performed on a O2 workstation equipped with 4 R12000
processors (250 MHz) and 2GB RAM. The atom environment
description method is combined with a structure editor and the
trained neural networks in a new version of the software C SHIFT

(27, 29) that computes the chemical shift of organic substances.
C SHIFT is written in Microsoft Visual C++.

All 13C chemical shifts obtained from the SPECINFO database
were computed with the in-house version of SPECINFO (14) at
the BASF AG in Ludwigshafen. ACD/CNMR (16), PREDICTIT

NMR (32), COSMOS (34), GAUSSIAN (33), SPECTOOL (13), and
CHEMDRAW (12) were used to compute the chemical shifts of
Taxol.
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